// Copyright 2025 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* This example is an example code that will create a Matter Device which can be commissioned and controlled from a Matter Environment APP. Additionally the ESP32 will send debug messages indicating the Matter activity. Turning DEBUG Level ON may be useful to following Matter Accessory and Controller messages. */ // Matter Manager #include #if !CONFIG_ENABLE_CHIPOBLE // if the device can be commissioned using BLE, WiFi is not used - save flash space #include #endif // List of Matter Endpoints for this Node // Matter Thermostat Endpoint MatterThermostat SimulatedThermostat; // CONFIG_ENABLE_CHIPOBLE is enabled when BLE is used to commission the Matter Network #if !CONFIG_ENABLE_CHIPOBLE // WiFi is manually set and started const char *ssid = "your-ssid"; // Change this to your WiFi SSID const char *password = "your-password"; // Change this to your WiFi password #endif // set your board USER BUTTON pin here - decommissioning button const uint8_t buttonPin = BOOT_PIN; // Set your pin here. Using BOOT Button. // Button control - decommision the Matter Node uint32_t button_time_stamp = 0; // debouncing control bool button_state = false; // false = released | true = pressed const uint32_t decommissioningTimeout = 5000; // keep the button pressed for 5s, or longer, to decommission // Simulate a system that will activate heating/cooling in addition to a temperature sensor - add your preferred code here float getSimulatedTemperature(bool isHeating, bool isCooling) { // read sensor temperature and apply heating/cooling float simulatedTempHWSensor = SimulatedThermostat.getLocalTemperature(); if (isHeating) { // it will increase to simulate a heating system simulatedTempHWSensor = simulatedTempHWSensor + 0.5; } if (isCooling) { // it will decrease to simulate a colling system simulatedTempHWSensor = simulatedTempHWSensor - 0.5; } // otherwise, it will keep the temperature stable return simulatedTempHWSensor; } void setup() { // Initialize the USER BUTTON (Boot button) that will be used to decommission the Matter Node pinMode(buttonPin, INPUT_PULLUP); Serial.begin(115200); // CONFIG_ENABLE_CHIPOBLE is enabled when BLE is used to commission the Matter Network #if !CONFIG_ENABLE_CHIPOBLE // Manually connect to WiFi WiFi.begin(ssid, password); // Wait for connection while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); } Serial.println(); #endif // Simulated Thermostat in COOLING and HEATING mode with Auto Mode to keep the temperature between setpoints // Auto Mode can only be used when the control sequence of operation is Cooling & Heating SimulatedThermostat.begin(MatterThermostat::THERMOSTAT_SEQ_OP_COOLING_HEATING, MatterThermostat::THERMOSTAT_AUTO_MODE_ENABLED); // Matter beginning - Last step, after all EndPoints are initialized Matter.begin(); // Check Matter Accessory Commissioning state, which may change during execution of loop() if (!Matter.isDeviceCommissioned()) { Serial.println(""); Serial.println("Matter Node is not commissioned yet."); Serial.println("Initiate the device discovery in your Matter environment."); Serial.println("Commission it to your Matter hub with the manual pairing code or QR code"); Serial.printf("Manual pairing code: %s\r\n", Matter.getManualPairingCode().c_str()); Serial.printf("QR code URL: %s\r\n", Matter.getOnboardingQRCodeUrl().c_str()); // waits for Matter Thermostat Commissioning. uint32_t timeCount = 0; while (!Matter.isDeviceCommissioned()) { delay(100); if ((timeCount++ % 50) == 0) { // 50*100ms = 5 sec Serial.println("Matter Node not commissioned yet. Waiting for commissioning."); } } Serial.println("Matter Node is commissioned and connected to the network. Ready for use."); // after commissioning, set initial thermostat parameters // start the thermostat in AUTO mode SimulatedThermostat.setMode(MatterThermostat::THERMOSTAT_MODE_AUTO); // cooling setpoint must be lower than heating setpoint by at least 2.5C (deadband), in auto mode SimulatedThermostat.setCoolingHeatingSetpoints(20.0, 23.00); // the target cooler and heating setpoint // set the local temperature sensor in Celsius SimulatedThermostat.setLocalTemperature(12.50); Serial.println(); Serial.printf( "Initial Setpoints are %.01fC to %.01fC with a minimum 2.5C difference\r\n", SimulatedThermostat.getHeatingSetpoint(), SimulatedThermostat.getCoolingSetpoint() ); Serial.printf("Auto mode is ON. Initial Temperature of %.01fC \r\n", SimulatedThermostat.getLocalTemperature()); Serial.println("Local Temperature Sensor will be simulated every 10 seconds and changed by a simulated heater and cooler to move in between setpoints."); } } // This will simulate the thermostat control system (heating and cooling) // User can set a local temperature using the Serial input (type a number and press Enter) // New temperature can be an positive or negative temperature in Celsius, between -50C and 50C // Initial local temperature is 10C as defined in getSimulatedTemperature() function void readSerialForNewTemperature() { static String newTemperatureStr; while (Serial.available()) { char c = Serial.read(); if (c == '\n' || c == '\r') { if (newTemperatureStr.length() > 0) { // convert the string to a float value float newTemperature = newTemperatureStr.toFloat(); // check if the new temperature is valid if (newTemperature >= -50.0 && newTemperature <= 50.0) { // set the new temperature SimulatedThermostat.setLocalTemperature(newTemperature); Serial.printf("New Temperature is %.01fC\r\n", newTemperature); } else { Serial.println("Invalid Temperature value. Please type a number between -50 and 50"); } newTemperatureStr = ""; } } else { if (c == '+' || c == '-' || (c >= '0' && c <= '9') || c == '.') { newTemperatureStr += c; } else { Serial.println("Invalid character. Please type a number between -50 and 50"); newTemperatureStr = ""; } } } } // loop will simulate the thermostat control system // User can set a local temperature using the Serial input (type a number and press Enter) // User can change the thermostat mode using the Matter APP (smartphone) // The loop will simulate a heating and cooling system and the associated local temperature change void loop() { static uint32_t timeCounter = 0; // Simulate the heating and cooling systems static bool isHeating = false; static bool isCooling = false; // check if a new temperature is typed in the Serial Monitor readSerialForNewTemperature(); // simulate thermostat with heating/cooling system and the associated local temperature change, every 10s if (!(timeCounter++ % 20)) { // delaying for 500ms x 20 = 10s float localTemperature = getSimulatedTemperature(isHeating, isCooling); // Print the current thermostat local temperature value Serial.printf("Current Local Temperature is %.01fC\r\n", localTemperature); SimulatedThermostat.setLocalTemperature(localTemperature); // publish the new temperature value // Simulate the thermostat control system - User has 4 modes: OFF, HEAT, COOL, AUTO switch (SimulatedThermostat.getMode()) { case MatterThermostat::THERMOSTAT_MODE_OFF: // turn off the heating and cooling systems isHeating = false; isCooling = false; break; case MatterThermostat::THERMOSTAT_MODE_AUTO: // User APP has set the thermostat to AUTO mode -- keeping the tempeature between both setpoints // check if the heating system should be turned on or off if (localTemperature < SimulatedThermostat.getHeatingSetpoint() + SimulatedThermostat.getDeadBand()) { // turn on the heating system and turn off the cooling system isHeating = true; isCooling = false; } if (localTemperature > SimulatedThermostat.getCoolingSetpoint() - SimulatedThermostat.getDeadBand()) { // turn off the heating system and turn on the cooling system isHeating = false; isCooling = true; } break; case MatterThermostat::THERMOSTAT_MODE_HEAT: // Simulate the heating system - User has turned the heating system ON isHeating = true; isCooling = false; // keep the cooling system off as it is in heating mode // when the heating system is in HEATING mode, it will be turned off as soon as the local temperature is above the setpoint if (localTemperature > SimulatedThermostat.getHeatingSetpoint()) { // turn off the heating system isHeating = false; } break; case MatterThermostat::THERMOSTAT_MODE_COOL: // Simulate the cooling system - User has turned the cooling system ON if (SimulatedThermostat.getMode() == MatterThermostat::THERMOSTAT_MODE_COOL) { isCooling = true; isHeating = false; // keep the heating system off as it is in cooling mode // when the cooling system is in COOLING mode, it will be turned off as soon as the local temperature is bellow the setpoint if (localTemperature < SimulatedThermostat.getCoolingSetpoint()) { // turn off the cooling system isCooling = false; } } break; default: log_e("Invalid Thermostat Mode %d", SimulatedThermostat.getMode()); } // Reporting Heating and Cooling status Serial.printf( "\tThermostat Mode: %s >>> Heater is %s -- Cooler is %s\r\n", MatterThermostat::getThermostatModeString(SimulatedThermostat.getMode()), isHeating ? "ON" : "OFF", isCooling ? "ON" : "OFF" ); } // Check if the button has been pressed if (digitalRead(buttonPin) == LOW && !button_state) { // deals with button debouncing button_time_stamp = millis(); // record the time while the button is pressed. button_state = true; // pressed. } if (digitalRead(buttonPin) == HIGH && button_state) { button_state = false; // released } // Onboard User Button is kept pressed for longer than 5 seconds in order to decommission matter node uint32_t time_diff = millis() - button_time_stamp; if (button_state && time_diff > decommissioningTimeout) { Serial.println("Decommissioning Thermostat Matter Accessory. It shall be commissioned again."); Matter.decommission(); button_time_stamp = millis(); // avoid running decommissining again, reboot takes a second or so } delay(500); }