MeshTalos-Client/managed_components/espressif__esp-serial-flasher/examples/common/example_common.c
2025-12-03 14:20:11 +08:00

320 lines
11 KiB
C

/* Copyright 2020-2023 Espressif Systems (Shanghai) CO LTD
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <sys/param.h>
#include "esp_loader_io.h"
#include "esp_loader.h"
#include "example_common.h"
#ifndef SINGLE_TARGET_SUPPORT
// For esp8266, esp32, esp32s2
#define BOOTLOADER_ADDRESS_V0 0x1000
// For esp32s3 and later chips
#define BOOTLOADER_ADDRESS_V1 0x0
#define PARTITION_ADDRESS 0x8000
#define APPLICATION_ADDRESS 0x10000
extern const uint8_t ESP32_bootloader_bin[];
extern const uint32_t ESP32_bootloader_bin_size;
extern const uint8_t ESP32_hello_world_bin[];
extern const uint32_t ESP32_hello_world_bin_size;
extern const uint8_t ESP32_partition_table_bin[];
extern const uint32_t ESP32_partition_table_bin_size;
extern const uint8_t ESP32_S2_bootloader_bin[];
extern const uint32_t ESP32_S2_bootloader_bin_size;
extern const uint8_t ESP32_S2_hello_world_bin[];
extern const uint32_t ESP32_S2_hello_world_bin_size;
extern const uint8_t ESP32_S2_partition_table_bin[];
extern const uint32_t ESP32_S2_partition_table_bin_size;
extern const uint8_t ESP8266_bootloader_bin[];
extern const uint32_t ESP8266_bootloader_bin_size;
extern const uint8_t ESP8266_hello_world_bin[];
extern const uint32_t ESP8266_hello_world_bin_size;
extern const uint8_t ESP8266_partition_table_bin[];
extern const uint32_t ESP8266_partition_table_bin_size;
extern const uint8_t ESP32_H4_bootloader_bin[];
extern const uint32_t ESP32_H4_bootloader_bin_size;
extern const uint8_t ESP32_H4_hello_world_bin[];
extern const uint32_t ESP32_H4_hello_world_bin_size;
extern const uint8_t ESP32_H4_partition_table_bin[];
extern const uint32_t ESP32_H4_partition_table_bin_size;
extern const uint8_t ESP32_H2_bootloader_bin[];
extern const uint32_t ESP32_H2_bootloader_bin_size;
extern const uint8_t ESP32_H2_hello_world_bin[];
extern const uint32_t ESP32_H2_hello_world_bin_size;
extern const uint8_t ESP32_H2_partition_table_bin[];
extern const uint32_t ESP32_H2_partition_table_bin_size;
void get_example_binaries(target_chip_t target, example_binaries_t *bins)
{
if (target == ESP8266_CHIP) {
bins->boot.data = ESP8266_bootloader_bin;
bins->boot.size = ESP8266_bootloader_bin_size;
bins->boot.addr = BOOTLOADER_ADDRESS_V0;
bins->part.data = ESP8266_partition_table_bin;
bins->part.size = ESP8266_partition_table_bin_size;
bins->part.addr = PARTITION_ADDRESS;
bins->app.data = ESP8266_hello_world_bin;
bins->app.size = ESP8266_hello_world_bin_size;
bins->app.addr = APPLICATION_ADDRESS;
} else if (target == ESP32_CHIP) {
bins->boot.data = ESP32_bootloader_bin;
bins->boot.size = ESP32_bootloader_bin_size;
bins->boot.addr = BOOTLOADER_ADDRESS_V0;
bins->part.data = ESP32_partition_table_bin;
bins->part.size = ESP32_partition_table_bin_size;
bins->part.addr = PARTITION_ADDRESS;
bins->app.data = ESP32_hello_world_bin;
bins->app.size = ESP32_hello_world_bin_size;
bins->app.addr = APPLICATION_ADDRESS;
} else if (target == ESP32S2_CHIP) {
bins->boot.data = ESP32_S2_bootloader_bin;
bins->boot.size = ESP32_S2_bootloader_bin_size;
bins->boot.addr = BOOTLOADER_ADDRESS_V0;
bins->part.data = ESP32_S2_partition_table_bin;
bins->part.size = ESP32_S2_partition_table_bin_size;
bins->part.addr = PARTITION_ADDRESS;
bins->app.data = ESP32_S2_hello_world_bin;
bins->app.size = ESP32_S2_hello_world_bin_size;
bins->app.addr = APPLICATION_ADDRESS;
} else if (target == ESP32H4_CHIP){
bins->boot.data = ESP32_H4_bootloader_bin;
bins->boot.size = ESP32_H4_bootloader_bin_size;
bins->boot.addr = BOOTLOADER_ADDRESS_V1;
bins->part.data = ESP32_H4_partition_table_bin;
bins->part.size = ESP32_H4_partition_table_bin_size;
bins->part.addr = PARTITION_ADDRESS;
bins->app.data = ESP32_H4_hello_world_bin;
bins->app.size = ESP32_H4_hello_world_bin_size;
bins->app.addr = APPLICATION_ADDRESS;
} else if (target == ESP32H2_CHIP){
bins->boot.data = ESP32_H2_bootloader_bin;
bins->boot.size = ESP32_H2_bootloader_bin_size;
bins->boot.addr = BOOTLOADER_ADDRESS_V1;
bins->part.data = ESP32_H2_partition_table_bin;
bins->part.size = ESP32_H2_partition_table_bin_size;
bins->part.addr = PARTITION_ADDRESS;
bins->app.data = ESP32_H2_hello_world_bin;
bins->app.size = ESP32_H2_hello_world_bin_size;
bins->app.addr = APPLICATION_ADDRESS;
}else {
abort();
}
}
extern const uint8_t ESP32_app_bin[];
extern const uint32_t ESP32_app_bin_size;
extern const uint8_t ESP32_C2_app_bin[];
extern const uint32_t ESP32_C2_app_bin_size;
extern const uint8_t ESP32_C3_app_bin[];
extern const uint32_t ESP32_C3_app_bin_size;
extern const uint8_t ESP32_H2_app_bin[];
extern const uint32_t ESP32_H2_app_bin_size;
extern const uint8_t ESP32_H4_app_bin[];
extern const uint32_t ESP32_H4_app_bin_size;
extern const uint8_t ESP32_S3_app_bin[];
extern const uint32_t ESP32_S3_app_bin_size;
void get_example_ram_app_binary(target_chip_t target, example_ram_app_binary_t *bin)
{
switch (target) {
case ESP32_CHIP: {
bin->ram_app.data = ESP32_app_bin;
bin->ram_app.size = ESP32_app_bin_size;
break;
}
case ESP32C2_CHIP: {
bin->ram_app.data = ESP32_C2_app_bin;
bin->ram_app.size = ESP32_C2_app_bin_size;
break;
}
case ESP32C3_CHIP: {
bin->ram_app.data = ESP32_C3_app_bin;
bin->ram_app.size = ESP32_C3_app_bin_size;
break;
}
case ESP32H2_CHIP: {
bin->ram_app.data = ESP32_H2_app_bin;
bin->ram_app.size = ESP32_H2_app_bin_size;
break;
}
case ESP32H4_CHIP: {
bin->ram_app.data = ESP32_H4_app_bin;
bin->ram_app.size = ESP32_H4_app_bin_size;
break;
}
case ESP32S3_CHIP: {
bin->ram_app.data = ESP32_S3_app_bin;
bin->ram_app.size = ESP32_S3_app_bin_size;
break;
}
default: {
abort();
}
}
}
#endif
esp_loader_error_t connect_to_target(uint32_t higher_transmission_rate)
{
esp_loader_connect_args_t connect_config = ESP_LOADER_CONNECT_DEFAULT();
esp_loader_error_t err = esp_loader_connect(&connect_config);
if (err != ESP_LOADER_SUCCESS) {
printf("Cannot connect to target. Error: %u\n", err);
return err;
}
printf("Connected to target\n");
if (higher_transmission_rate && esp_loader_get_target() != ESP8266_CHIP) {
err = esp_loader_change_transmission_rate(higher_transmission_rate);
if (err == ESP_LOADER_ERROR_UNSUPPORTED_FUNC) {
printf("ESP8266 does not support change transmission rate command.");
return err;
} else if (err != ESP_LOADER_SUCCESS) {
printf("Unable to change transmission rate on target.");
return err;
} else {
err = loader_port_change_transmission_rate(higher_transmission_rate);
if (err != ESP_LOADER_SUCCESS) {
printf("Unable to change transmission rate.");
return err;
}
printf("Transmission rate changed changed\n");
}
}
return ESP_LOADER_SUCCESS;
}
esp_loader_error_t flash_binary(const uint8_t *bin, size_t size, size_t address)
{
esp_loader_error_t err;
static uint8_t payload[1024];
const uint8_t *bin_addr = bin;
printf("Erasing flash (this may take a while)...\n");
err = esp_loader_flash_start(address, size, sizeof(payload));
if (err != ESP_LOADER_SUCCESS) {
printf("Erasing flash failed with error %d.\n", err);
return err;
}
printf("Start programming\n");
size_t binary_size = size;
size_t written = 0;
while (size > 0) {
size_t to_read = MIN(size, sizeof(payload));
memcpy(payload, bin_addr, to_read);
err = esp_loader_flash_write(payload, to_read);
if (err != ESP_LOADER_SUCCESS) {
printf("\nPacket could not be written! Error %d.\n", err);
return err;
}
size -= to_read;
bin_addr += to_read;
written += to_read;
int progress = (int)(((float)written / binary_size) * 100);
printf("\rProgress: %d %%", progress);
fflush(stdout);
};
printf("\nFinished programming\n");
#if MD5_ENABLED
err = esp_loader_flash_verify();
if (err == ESP_LOADER_ERROR_UNSUPPORTED_FUNC) {
printf("ESP8266 does not support flash verify command.");
return err;
} else if (err != ESP_LOADER_SUCCESS) {
printf("MD5 does not match. err: %d\n", err);
return err;
}
printf("Flash verified\n");
#endif
return ESP_LOADER_SUCCESS;
}
esp_loader_error_t load_ram_binary(const uint8_t *bin)
{
printf("Start loading\n");
esp_loader_error_t err;
const example_bin_header_t *header = (const example_bin_header_t *)bin;
example_bin_segment_t segments[header->segments];
// Parse segments
uint32_t seg;
uint32_t *cur_seg_pos;
for (seg=0, cur_seg_pos = (uint32_t *)(&bin[BIN_FIRST_SEGMENT_OFFSET]);
seg < header->segments;
seg++) {
segments[seg].addr = *cur_seg_pos++;
segments[seg].size = *cur_seg_pos++;
segments[seg].data = (uint8_t *)cur_seg_pos;
cur_seg_pos += (segments[seg].size) / 4;
}
// Download segments
for (seg=0; seg < header->segments; seg++) {
printf("Downloading %"PRIu32" bytes at 0x%08"PRIx32"...\n", segments[seg].size, segments[seg].addr);
err = esp_loader_mem_start(segments[seg].addr, segments[seg].size, ESP_RAM_BLOCK);
if (err != ESP_LOADER_SUCCESS) {
printf("Loading ram start with error %d.\n", err);
return err;
}
size_t remain_size = segments[seg].size;
uint8_t *data_pos = segments[seg].data;
while(remain_size > 0) {
size_t data_size = MIN(ESP_RAM_BLOCK, remain_size);
err = esp_loader_mem_write(data_pos, data_size);
if (err != ESP_LOADER_SUCCESS) {
printf("\nPacket could not be written! Error %d.\n", err);
return err;
}
data_pos += data_size;
remain_size -= data_size;
}
}
err = esp_loader_mem_finish(header->entrypoint);
if (err != ESP_LOADER_SUCCESS) {
printf("\nLoad ram finish with Error %d.\n", err);
return err;
}
printf("\nFinished loading\n");
return ESP_LOADER_SUCCESS;
}